Skip to main content

Posts

Showing posts with the label The Golden Ratio

The Number 1.6: Base of Fibonacci Sequence and the Golden Ratio

This post is about the number 1.6 that forms the base of the mathematical concepts Fibonacci sequence and the Golden ratio. For better understanding of this amazing number 1.6, it is important to know about Fibonacci sequence and the Golden ratio. Golden Ratio The  Golden ratio is the ratio of a line segment cut into two pieces of distinct lengths such that the ratio of the longer segment to the shorter segment is equal to the whole segment to that of the longer segment. It is denoted by the symbol Phi [ø]. Suppose there is a line segment AB, and C is any point that divides the line segment AB into two pieces of distinct lengths such that AC is greater than CB. Then, as per the definition, [ø] = AC/CB = AB/AC. The value of the Golden ratio [ø] is 1.6 1803398875 . As you can see, the value of the Golden ratio starts with the number 1.6. For more information on the Golden ratio, see https://theamazingconcepts.blogspot.com/2021/07/the-golden-ratio-key-to-amazing-design....

The Golden Ratio – The Key to Amazing Design Experiences

The Golden Ratio , also referred to as the Golden Section , Golden Mean , or Divine Proportion , is the ratio of a line segment cut into two pieces of distinct lengths such that the ratio of the longer segment to the shorter segment is equal to the whole segment to that of the longer segment. It is denoted by the symbol Phi [ø]. For example, a line segment AB divided into two distinct lengths AC & CB; here AC is the longer part and CB is the shorter one, then as per the definition of the Golden Ratio stated above, mathematical representation will be as: Suppose the longer part AC is ø and the shorter part CB is 1, then putting the value of AC, CB and AB in the above equation as shown below: The equation ø 2 – ø – 1 = 0 is a Quadratic Equation [ax 2 + bx + c = 0] Now use the Quadratic Formula  in the above Quadratic Equation by using the given values a = 1, b = -1 and c = -1 as shown below: The positive solution can be written as shown below: Solving this equation will give ...